国际标准期刊号: 2311-3278
侯赛因·索朱迪
我们提出了一种使用 PEDOT:PSS 和石墨烯作为活性导电电极膜以及具有 1-乙基-3-甲基咪唑鎓双(三氟甲基磺酰基)酰亚胺 (EMI-TSFI) 添加剂作为离子介质的柔性柔顺聚氨酯基板制造的电致变色器件 (ECD) 。该器件具有柔顺的弹性中间基板以及透明度受控的 PEDOT:PSS 薄膜,可提供宽广的色彩对比度和快速的切换速率。我们利用石墨烯的起皱不稳定性来实现疏水性,而不影响 ECD 的透明度。这种机械自组装方法有助于通过诱导测量的预训练条件来控制产生的皱纹的波长,并通过选择所使用的底层材料来调节模量对比度,从而控制透明度的程度。在 15 ± 0.1 V 的工作直流电压下,对于 90% 的透射率变化,该器件的还原和氧化切换时间分析为 5.76 秒和 5.34 秒。应变相关研究表明,该器件在保留切换对比度的情况下性能稳健。即使在 15% 单轴应变条件下也是如此。我们的器件还表现出卓越的抗润湿性能,在石墨烯薄膜中诱导径向预应变为 30% 时,平均水接触角为 110° ± 2°。该设备具有广泛的色彩对比度、灵活性和抗湿性,可用于智能窗户、遮阳板和其他可穿戴设备,这些功能对于开发新一代智能交互设备至关重要。在 15 ± 0.1 V 的工作直流电压下,90% 的透射率变化需要 34 秒。应变相关研究表明,即使在 15% 单轴应变条件下,该器件也能保持开关对比度,性能稳定。我们的器件还表现出卓越的抗润湿性能,在石墨烯薄膜中诱导径向预应变为 30% 时,平均水接触角为 110° ± 2°。该设备具有广泛的色彩对比度、灵活性和抗湿性,可用于智能窗户、遮阳板和其他可穿戴设备,这些功能对于开发新一代智能交互设备至关重要。在 15 ± 0.1 V 的工作直流电压下,90% 的透射率变化需要 34 秒。应变相关研究表明,即使在 15% 单轴应变条件下,该器件也能保持开关对比度,性能稳定。我们的器件还表现出卓越的抗润湿性能,在石墨烯薄膜中诱导径向预应变为 30% 时,平均水接触角为 110° ± 2°。该设备具有广泛的色彩对比度、灵活性和抗湿性,可用于智能窗户、遮阳板和其他可穿戴设备,这些功能对于开发新一代智能交互设备至关重要。我们的器件还表现出卓越的抗润湿性能,在石墨烯薄膜中诱导径向预应变为 30% 时,平均水接触角为 110° ± 2°。该设备具有广泛的色彩对比度、灵活性和抗湿性,可用于智能窗户、遮阳板和其他可穿戴设备,这些功能对于开发新一代智能交互设备至关重要。我们的器件还表现出卓越的抗润湿性能,在石墨烯薄膜中诱导径向预应变为 30% 时,平均水接触角为 110° ± 2°。该设备具有广泛的色彩对比度、灵活性和抗湿性,可用于智能窗户、遮阳板和其他可穿戴设备,这些功能对于开发新一代智能交互设备至关重要。
电磁器件由于其强大的设计、易于制造和省电的低功耗运行机制,在过去十年中受到了广泛的关注。诸如锕系元素和镧系元素之类的过渡金属等常用材料已普遍用于在器件中表现出电致变色特性。目前,氧化铟锡(ITO)是电子和有机光伏(OPV)中广泛使用的透明导电电极,作为一种不常见的地球金属,其制造价格一直随着资源的枯竭而上涨。此外,在柔性基板上沉积ITO很困难,因为环境温度沉积方法会增加其缺陷密度并从根本上降低其载流子浓度。虽然电致变色开关的概念早在七十年代就已提出,目前,寻找更多的目标是创造有机聚合物,与金属聚合物相比,其具有相似的性能和特性,同时更加可行、可持续和环保。PEDOT:PSS(聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐)是噻吩家族的一种天然聚合物,由于其更高的电导率、更高的环境和电化学稳定性以及作为可水处理材料的一致性,已显示出非常有前景的结果。聚合物主要用于柔性电子学领域的巨大探索,并作为传统基于金属氧化物的全电致变色系统的选择。电致变色对比度是此类系统整体性能评估的重要参数。佩多:
Moreover, graphene has superior mechanical, optical, and electrical residences enabling its use in transparent electronic and photonic devices. These properties of graphene have made it an great candidate as a transparent conductive electrode. Graphene synthesized through chemical vapor deposition (CVD) on transition metals results in formation of giant scale films with minimized structural defects, enabling its purposes on an industrial scale . In addition, studies have shown that controlled surface geometry of graphene can alter the wetting properties of the film, giving upward push to superhydrophobic surfaces. Here, the mechanical instability of graphene is harnessed to develop wrinkles on the film by applying radial stress to soft underlying substrate. While PEDOT:PSS and graphene have been used as conductive electrodes in electronics and photonics, the built-in electrochromic and hydrophobic properties of these materials have not been studied. It is revealed a working electrochromic machine which is flexible and stretchable, whilst exhibiting superior antiwetting properties. Graphene-based flexible electrochromic devices have been visualized in the past . However, principal challenges lie in developing a sturdy gadget shape which is free of liquid electrolytes that are hazardous to health and environment. Leakage of cell components is highly undesirable in optoelectronics, specifically in wearable devices. Here, we incorporate the electrolyte in a stretchable elastomer base which ensures an ionic conductivity and permits flexibility of the device, whilst bettering safety.
Wrinkling or buckling in thin films is brought on due to prompted stresses in the components. The instability arises due to the compression of an interface leading to a deformation which propagates modifications in surface properties. This out-of-plane deformation of graphene enhances the adhesion energy of the stiff films to compliant substrates. It is located that the morphology of the generated wrinkles is generally established on the floor texture of the underlying substrate, with larger floor roughness contributing to higher wrinkling. This reversible instability can be harnessed to generate various characteristics in surface morphologies that are of splendid importance in nanofabrication of elastic optoelectronic devices. To this end, we appoint a compliant elastomer (polyurethane) containing ionic liquid as dielectric medium and comprise PEDOT:PSS/Xylitol films as the electrode, which reveals electrochromic nature upon applying voltages, and graphene, which acts as the hydrophobic counter electrode. Our system shows more advantageous bleaching price and steady functionality at variable strain rates envisioning its potential in bendy electronics. This novel of stable, transparent, and routinely flexible videos gives a new viewpoint for optoelectronic devices.
铜上的 CVD 石墨烯购自 ACS 织物,氯化铁基铜蚀刻剂购自 Sigma-Aldrich。将石墨烯压印到 2 毫米厚的 PDMS 基板上,并在蚀刻溶液中蚀刻 30 分钟。PDMS 上的石墨烯用去离子水仔细清洗,并用空气/氮气吹干,然后通过冲压转换为 PU/IL 基材。石墨烯的表面形态可以进一步调整,以显示更大的水接触角值,同时表现出最理想的导电性。这与 PEDOT:PSS 等有机聚合物作为柔性透明导电电极的用途相结合,可以使 ECD 具有更强的功能,使其能够应用于持续暴露于水拉伸/弯曲条件下的区域。