热力学与催化杂志

热力学与催化杂志
开放获取

国际标准期刊号: 2157-7544

抽象的

Regulation of Low-Molecular-Weight Organic Acids on CaCO3 Crystallization

Li Meng

Biomimetic synthesis and shape-control of CaCO3 has been studied in great detail due to its abundance in nature and also its important industrial application in the paint, plastics, rubber and paper industries. Besides, CaCO3 is rich polymorphism, and it has been widely used as a model mineral in biomimetic experiments, leading to increased understanding of the mechanisms of biogenic control over mineral polymorph, orientation, and morphology. Currently known CaCO3 crystal types include three anhydrous polymorphs (trigonal calcite, orthorhombic aragonite, and hexagonal vaterite) and two hydrated polymorphs (monoclinic hexahydrate ikaite and calcium carbonate monohydrate), in which calcite is the most thermodynamic stable phase. The implementation of natural or specifically designed molecular additives to control the morphology and crystal type of CaCO3 have long been a source of fascination. However, the application of this approach for achieving controlled crystallization of CaCO3 poses significant challenges due to inherent simplicity of its constituent components and the straightforward nature of surface packing patterns, which hinder the application of synthesis of CaCO3 with complex superstructure.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证.
Top